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Abstract. Mutual screening of charged impurities in bulk compensated semiconductors is 
described. Several models for analytical treabnent are discussed. Monte Carlo simulations 
of impurity. relaxation in disordered systems at non-zuo temperatures are performed. Pair 
distribution functions are obtained. A structure of the screened acceptor-donor-electron complex 
is studied. Friedel-like oscillations in a screening charge distribution are observed. The m w i x  
element for electron scattering and electron mobility is calculated. Remarkable behaviour at 
small wavevectors is observed. Essential corrections against standard models at the limit of 
zero temperature are found. 

1. Introduction 

Screening of the electron-charged-impurity interaction is often discussed in the literature. 
Mostly it is based on a theory of screening of the interaction by free carriers surrounding 
random distributed positive and negative charged impurities. However, in compensated 
semiconductors, especially at low temperatures when the free carriers freeze out, the 
screening is given predominantly by a rearrangement and mutua.1 screening of positive 
(n-type) or negative (p-type) charges. This effect has not been so widely investigated and 
the theoretical description is not satisfactory. 

Reviewing longstanding contributions to the problem there have been two attempts to 
solve that-Conwell and Weisskopf [ l ]  and Brooks and Herring [Z]. A main qualitative 
drawback of these models is caused by too large screening of the Coulomb interaction 
at low temperature which results in an infinite limit of electron mobility at T + 0. A 
more recent paper of Falicov and Cuevas [3] removes this fault introducing pair impurity 
correlation functions. However, the given analysis contains several simplifications to make 
the analytical treatment possible. Thus the relevance of the submitted theory is decreased and 
additional improvement should be performed. Another procedure based on Fujita formalism 
14, 51 of a collisional broadening of the spectral function has been used in [6]. Both the 
latter papers yield a zero limit of electron mobility at T + 0. The mentioned literature is 
limited to the few ancient entries above as I have not found any substantial paper on the 
problem in the recent literature. 

The aim of this paper is to extend and precise the theory from 131. Computer simulations 
offer a numerical form of pair correlation functions which allow us to calculate the electron 
mobility in a limit of relaxation time approximation without additional simplifications. 

2. Theory 

Throughout the paper we shall assume an n-type non-degenerate semiconductor with N,j 
donors and N. acceptors per unit volume (Nd > NJ. The following notation is used 
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throughout this paper: Nd+ (N;) means the average density of ionized donors (acceptors), 
N,f(r) Ihg-(r)) designates the local density of ionized donors (acceptors), ne (N,(r)) is 
the average (local) density of free electrons. e, p ( r ) ,  E$, E,, and a are respectively the 
charge of the electron, electric potential, static and vacuum dielectric constant and volume 
of the sample. We set E* = I5 in calculations. AI1 acceptors are ionized and free holes are 
neglected here. As it is usual in screening calculations we start with the Poisson equation 

Positively charged donors are neglected. We assume that free carriers play a small role 
at the screening of compensated non-degenerate material. Thus, we describe them only 
by a simple linear expansion in $op(r) which is valid at high enough temperature T or 
non-degenerate independent carriers, smooth potential and IOW particle concentration. 

In case of screening at low temperature when free carriers freeze out ne can be set to 
zero. Following [31 we mark 91; 1 - 1,2 ,3 , .  . . , Nan coordinates of acceptors and 
zS; s = 1.2,3, . . . , N2"n coordinates of ionized donors. Crossing to the Fourier transform 
we write 

and similarly for the donors. Equation (1) is then in the form 

where 

is the free-electron screening length. The square of the matrix element for the electron 
scattering for IC # 0 is given by 

((. . .)) means an ensemble averaging. Treating the macroscopically uniform and isotropic 
system we can average over a sphere obtaining direction-independent quantities 

where 
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C,, Cd, Cad are respectively acceptor-acceptor. donor-donor and acceptor-donor pair 
distribution functions given by 

If we assume that there is no correlation in the distribution of the impurity atoms, the C, can 
be neglected. Thus it has only formal meaning in this paper. The integral in (8) expresses 
the screening caused by a rearrangement of the charge on the donor sites. In the case of 
no correlations it is equal to zero. The widely used model of Brooks and Herring [Z] sets 
F ( k )  = Na + Nd+ and grasps the total screening by a change of the electron concentration 
n, at (5) by an effective concentration 

8: = ne + (ne + N d  [ 1 - (ne 4- N,) /Nd] . (10) 

A form similar to (7) was also obtained in [3]. Free-particle and donor-donor screenings 
were excluded there. We shall try to avoid this simplification in this paper. 

The acceptors are fully screened by the charged donors and free electrons. The screening 
charge must be collected at the distant part of the volume. The mobile charges screen the 
acceptors and interact mutually. Simultaneously the system must be neutral. If T or ne are 
low, the acceptors are screened mainly by the donors. Each acceptor serves as a centre to 
give rise to a complex structure containing on average Nd+/Na donors and n./N. electrons. 
If T and ne increase, some donors and the same number of electrons escape from the 
complex. Then the free electrons (or a lack of them on the acceptors) start to prevail in the 
screening of the interaction. These conditions provide rules to establish some properties of 
the correlation functions. The requirement of neutrality gives for the long-range branch of 
the functions 
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where X E (0, I)  is a fraction of donors bound in the complexes. The function F ( k  -+ 0) 
(8) gives 

F ( k - + O ) = N , + N d +  

X cannot be established from the above conditions and must be deduced from a detailed 
calculation. 

Due to the fact that any constant function gives no increment to the integral in (8), i t  is 
useful to substitute C,, c d d  and Cd by the difference functions 

which describe short-range correlations. For the sake of abbreviation we introduce the total 
screening function 

acto, = 28cd - 8Cm - 6cdd. (15) 
The introduction of the difference function allows us to limit thc radial integration to a 
range where the screening effects are really observed. 

Since all acceptors are assumed ionized, and only a fraction Nd+/Nd of the total number 
of donors is ionized, we would expect the donors to be preferentially ionized in those 
locations which are close to acceptor sites. This means that in the neighbourhood of an 
acceptor the density of ionized donors should reach the value Nd [3]. Similarly there are 
no pairs of ionized donors in a close proximity. Thus 

(16) C,jd(r + 0) = 0 Cad(?' + 0) = N&"n. 

Finding the correlation functions is a crucial point of the reported investigation. Here 
we outline two possibilities for how to solve the problem analytically. 

2.1.  Exponential correlation 

Seeking the correlation function in an exponential form is useful for a simple analytical 
treatment which allows us to obtain analytical forms as both for relaxation time and for 
electron mobility. The model was introduced first in [3] where the donor-donor correlations 
were omitted. We generalize the approach including these correlations. Here as well as in 
the next model we neglect ne and set d;* = 0. Further we assume large volume nNd >> 1. 
The correlation function is looked for in the form 

8Ctot(r) = olSZexp(-ar) (17) 

(Y = [2Na (Nd - NZ)  4- (Nd+)*].  (18) 

The pre-exponential term is obtained from the condition (16). Due to the fact that the 
interaction must be fully screened at large distances we have an additional condition 
F(k -+ 0) = 0 to find the parameter a 

where 

However, there is no serious reason to lake the function SCta as in (17). As seen later 
especially at low temperature the exponential form differs from the correct functions. 
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2.2. Dipole model 

3569 

If the compensation is low (N, << Nd) then at low temperature, charged donors are localized 
at the minimal distance from the acceptors. Their positions are given just by a possibility of 
reaching the close proximity of the acceptors and there is thus no donor-donor correlation 
(6Cdd = 0). The scattering potential can be described by a set of randomly distributed 
dipoles. The distribution function of the dipoles is given by 

8C.dfr) = Nd 1 - 4Yr X26Cad(X) dx . (20) C l  1 
At small distances the dipole distribution is given by the total donor concentration. 
Increasing the distance the dipole is created only in the case where there is no closer 
configuration. The second term in the angular brackets expresses a probability that up to 
the distance r the dipole has already been created. The solution of (20) reads 

Similarly as in the case of the exponential correlation we could by to generalize (21) to a 
higher compensation degree writing 

6C&) = orQexp(-br3) (22) 
4Yra 

3 (N. + Nd+) ' 
b =  (23) 

The ensuing numerical treatment will be fruitful to check correctness of the performed 
generalization at higher compensations. 

3. Monte Carlo simulations 

Numerical simulations of the impurity band and the charge relaxation are currently discussed 
in the literature [7, 81. They are directed mostly at studying a singleparticle density of states 
in the impurity band. Due to the long-range tail of the Coulomb interaction the Coulomb 
gap is created at the Fermi energy. For details see [8]. We apply the same numerical 
procedure to obtain the relaxed pair distribution functions. 

First. the positions of NdQ donors and Nan acceptors are randomly generated in a 
cubic sample with the volume Q. The single-particle energy of E,, which is needed to 
bring a positive charge from infinity to a donor site .%$ without simultaneous rearrangement 
of charges on other sites, results from the relation 

(nkJ is a set of occupation numbers, n, E ( O , l J ,  z s n s  = NlQ. The potential qs arises 
from the fixed charges on the acceptor sites. The Coulomb interaction is screened by the 
free carriers. We consider our sample as an elementary cell of a periodically repeated lattice 
and assume that the interaction energy of two sites is determined by the shortest distance 
between them within this repeated lattice, 

3 

y=L 
z,:# = (min ( I z y . s  - wI. L - Izy.Y - ~y..c,I})~ (25) 
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where L3 = Q. In this way, all sites are equivalent; they seem to be positioned in the 
middle of the finite sample. 

The second step is a relaxation of the positive charge to obtain an equilibrium state at the 
fixed temperature. In order to speed up the procedure it is useful to relax first to a ‘frozen’ 
metastable state [8] which is nearer to the equilibrium than the random distribution. Then 
thermally activated hops are simulated. One of the charged sites is chosen. The charge 
can either hop to a neutral site or stay in its position. The probability of the hop from the 
charged state s into a neutral state s’ is given by 

where p = 1 j k s T  and the energy 

The third term in (27) comes from the subtraction of the interaction of the charge on site 
s with itself on site s’. The index s” rum over neutral states. If the hop is realized, 
E, are changed according to actual conditions. The hopping procedure is repeated until 
the total energy oscillates around some equilibrium position. Then the contribution of the 
configuration to the pair distribution function average is calculated. The pair distance is 
given by (25) and the functions are obtained in radial (direction-independent) form. The 
procedure continues by generation of new impurity positions. 

4. Electron mobility 

The electron mobility 
band in the form 

is obtained in the relaxation time approximation at the parabolic 

in‘ is the effective mass. The conduction via the impurity band is disregarded. A little 
rearrangement and substitution of (7) yields 

5. Results and discussion 

If the free carriers play a perceptible role in the screening of the interaction, the mobility 
is easy to calculate. However, in the case of ne + 0 and dd --f 00, the singularity in the 
matrix element must be compensated by a zero limit of F(k + 0) = 0. This result is 
difficult to obtain from the MC simulations. The fluctuations in the charge distribution cause 
oscillations of F in both positive and negative ways. 
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Figure 1. Acceptor-donar (full he) and donordonor (dashed line) radial distribution functions. 
N, = 5 x 1OIs cm-’. N,j = cm-’, ne = 0. T = I K. Non = 5000, averaged over 310 
configurations. 

A typical course of the correlation functions can be observed in figure 1. The &function 
peaks resulting from (9) are smoothed by a procedure SMOOFT [9]. In order to make the 
fluctuations more visible we plot radial distribution functions 

Conforming with (IZ), Ddd does not exhibit a repulsion of a charge to infinity. The 
rearrangement of the donors creates a Friedel-like oscillation in the charge distribution. 
A comparison of the total screening functions with (temperature-independent) exponential 
and dipole correlation can be checked in figure 2. 

If the integration in F is performed over the whole volume Q (see the appendix), 
the proper zero limit can be obtained. Unfortunately, this procedure does not improve 
the results. The distribution of the screening charge at a large distance i s  influenced by 
an interaction with the charge in the neighbouring cell given by the periodical boundary 
conditions (25). The screening charge is repulsed from the boundaries to the interior of the 
volume creating an overscreening of the central charge. Consequently, F(k) is negative at 
small k. 

As we want to check the limit of F(k + 0), it is useful to plot a function F(k)/k2 
to accentuate the small-k behaviour. The plots of this function for the discussed models 
are collected in figure 3. The influence of charge fluctuations on the MC curves is also 
demonstrated there. It is evident that none of the analytical models describe the MC 
simulations properly. Moreover, MC curves indicate a fast decrease at small k.  

To check that, we use another possibility to calculate the matrix element. We combine 
the discrete k as k = ZnnjL,  n = (n , ,  nz. ns)  and use just the form of (4) for the 
calculation. Then we average over all directions at the same magnitude. The set of the 
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Figure 2. Tod radial distribution functions at T = I K (full) md T = IO K, 260 configurations 
(dashed) compared with the model of exponential (dashdoned) and dipole (dotted) correlation. 
N, = 5 x IO” cm”, Nd = IO” C I I - ~ ,  nc = 0, Nan = 5000, 

Table 1. The set of integer vectors n soned by the magnitude. The vectors in the boxes 
correspond to circled poinrs in figure 4. 

n n2 n n2 n 2 n .2 

(1.0.0) I (4.2.0) 20 (6.1.0) 37 (5.5.1) 
21 
72 
24 
25 
25 
26 
26 
27 
27 
29 
29 
30 
32 
33 
33 
34 
35 

36 

51 
52 
53 
53 
54 
54 
54 
56 
57 
57 
58 
59 
59 
61 
61 

(6.3.2) 49 (6.5.1) 62 
(7.1.0) 50 (7.32) 62 
(5,5,0) 50 64 
(5.4.3) 50 (8,l.O) 65 

U 
(4.4.2) 36 (7.1.1) 51 (7.4.0) 65 

smallest integer vectors is for demonstration given in table 1. Results for various L 
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Figure 3. The function F ( k ) / k z  for the models mentioned in the text. N ,  = 5 x IO’’ em+, 
Nd = 10l6 ~ m - ~ ,  ns = 0. MC simulations I K for double averaging (full), 10 K (long dashed). 
exponential (long-short dashed), dipole (dashdoned). and for comparison Brooks 1 K (dotted), 
10 K (short dashed). The Brooks model curyes are given by the farm (N. + N:)kz / (kz  +dTZ) 
which has the same meaning for the electron scattering as F ( k ) / k 2  for the other models. 

at T = 1 K are shown in figure 4. Other temperatures and compensation rates give 
similar plots. The circled points correspond to vectors perpendicular to the cube boundaries, 
(2.0.0). (4,0,0). (6,0,0), (8.0.0). They are mostly influenced by the boundary conditions 
mentioned above and should be abandoned at the mobility calculation. The odd vectors 
(3,0,0), ( 5 , 0 , 0 ) ,  etc., are combined with other general directions which dimiish their 
deviation (see table 1). Also this procedure confirms the zero limit of F(k) /k2 (k  -+ 0). 
Concluding from that we interpolate the interval of small k by a linear dependence 
F(k) /kz (k  + 0) cx k connected to the MC curve. 

This surprising fact entails a significant result for the low-temperature mobility. While 
all the analytical models discussed above produce either zero or infinity mobility at h i t  of 
zero temperature, our numerical calculation gives a constant mobility in this case. The low- 
temperature proportionalities of the decisive quantities of the discussed models are included 
in table 2. 

A simple criterion for a mobility measurement can be now derived. The decrease of 
the matrix element is observed for small k e 2r / rS ,  where rs is an effective screening 
radius. Applying for simplicity the exponential correlation we obtain rs % 4/a. Connecting 
an effective kr with temperature we get the criterion which must be fulfilled to measure the 
effect in the form 
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Figure 4. A compmison of F ( k ) / k 2  f" MC simulations at T = I K with discrele k calculation 
according to (4). (*): N a n  = 800, 330 configurations. L = 0.543 pm. ( 0 ) :  Nan = 5ooO. 36 
configurations. L = I pm, (+): N& =20000,31 configuntions, L = 1.587 pm. 

Tablc 2. The proportionality behaviour of F(k) ,  d i  and p in the limit of IOW tempemure for 
the models discussed in he text. 

Model F(k)  d:(T) p ( T )  

Conwell and Weiskopf constant constant T-'n 
BroobandHerring constat T T-512 

Exponential correlation k2 m TIP 
Dipole model k2 CC TIP 
Monte Carlo k3 m constant 

Effective-mass dependences of the carrier mobility at two temperatures calculated from 
(30) are shown in figures 5, 6. Evidently, at T = 1 K the dipole model approximates the 
MC mobility quite well. At m* c 0.OSmo the error exceeds 50%. Increasing the temperature 
the MC results deviate in the direction of the exponential correlation. 

6. Conclusions 

Monte Carlo simulations were used to obtain the pair correlation functions in the system of 
charged sites in a compensated semiconductor. The donor-donor correlation does not repulse 
a charge to an infinity. The dipole model is the best to fit the mobility from MC results. 
Lowering the temperature the selection of screening model influences the electron mobility 
essentially. The oscillating character of the donor-donor pair correlation function decreases 
the matrix element for the electron scattering for small k. Consequently constant (non- 
zero) limit of the electron mobility at zero temperature is obtained. This effect increases the 
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Figure 5. An effective-mass dependence of &er mobility at T = I K.  MC simulations (full). 
dipole (dashed). exponential (dash-dotted). Brooks (dotted). 

“ b o  
Figure 6. An effective-mass dependence of d e r  mobility at T = 10 K. MC simulations (full), 
dipole (dashed). exponential (dash-dolted). Brooks (dotted). 

electron mobility at impure semiconductors with a tow effective mass at a low temperature as 
compared to the dipole model. A practical application of the model to bulk semiconductors 
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is confined by a temperature interval where the freecarrier concentration is large enough to 
allow the mobility measurement but stiU sufficiently low to screen the Coulomb interaction. 
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Appendix 

The integration in (8) assumes a homogeneous system with spherical symmetry. The MC 
simulations are performed in acube. Thus, the precise integration over R must be corrected 
in this respect. This problem is easy to solve using the following transformation 

R 
g(r) d'r = 4n r2g(r)B(r) dr. 

R = &L/2, g(r) is an arbitrary radial function where r = 0 in the centre of the cube and 
B is the correction function expressing a fraction of a spherical surface occurring inside the 
cube 

r < L / 2  
~ / 2  < r < L / &  
L/& < r < & ~ / 2  

(A2) 
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